Interventions for managing hidden hunger syndrome in children: a review of current evidence

Intervenções para o manejo da síndrome da fome oculta em crianças: uma revisão das evidências atuais

Running title: Hidden hunger in children.

Daniela Lima Mendonça 1 | Ana Vieira de Souza 2 | Elisa Grossi Mendonça 2 | André Luís Canuto 2 | Naara Rafaela Gonçalves 1,2 | Juliano Bergamaschine Mata Diz 2*

¹Serviço de Pediatria da Santa Casa de Misericórdia de Barbacena, Barbacena, Minas Gerais, Brasil.

²Faculdade de Medicina de Barbacena/Fundação José Bonifácio Lafayette de Andrada (FAME/FUNJOBE), Barbacena, Minas Gerais, Brasil.

*Autor para correspondência: Juliano Bergamaschine Mata Diz. Faculdade de Medicina de Barbacena – Praça Presidente Antônio Carlos, nº 08, bairro São Sebastião, CEP: 36202-336, Barbacena, Minas Gerais, Brasil. Contato: +55 32 3339-2950. Email: julianodiz@gmail.com. **Declaração de conflito de interesses:** Os autores declaram não haver conflito de interesses.

DOI:

Submetido: 01/07/2025 Aceito: 23/09/2025

ABSTRACT

Introduction: Hidden hunger syndrome (HHS) is characterized by a silent deficiency of essential micronutrients that negatively impacts child growth, development, and well-being. The prevalence of HHS is high in vulnerable populations, and it is a condition that is difficult to diagnose without specific tests because it presents with no or minimal clinical manifestations. **Objective:** to summarize and present current evidence on therapeutic interventions in children with HHS. **Methods:** This is a narrative review of the literature conducted by including original articles that used randomized clinical trial and systematic review designs, published in scientific journals indexed in the PubMed database, between 2020 and 2024. **Results:** Five original articles met the eligibility criteria and evidenced that micronutrient supplementation (*e.g.*, iron, zinc, and vitamin A) and/or educational/behavioral strategies (*e.g.*, lecture, informational material, and counseling) improved children's

nutritional status, reducing anemia, increasing serum micronutrient levels, and promoting healthy eating habits. Specifically, iron supplementation significantly improved cognitive function in infants and schoolchildren. In addition, food fortification/biofortification stood out as viable alternatives for clinically addressing HHS in the articles reviewed. **Conclusion:** Micronutrient supplementation and educational strategies are crucial in the treatment of the HHS, impacting nutritional profile and child development. However, the scarcity of important clinical outcomes, such as mortality, limits the scope of the results and further studies are needed to improve interventions and public policies aimed at reducing HHS in children.

Keywords: Hidden Hunger. Deficiency Diseases. Micronutrients. Dietary Supplements. Biofortification.

RESUMO

Introdução: A síndrome da "fome oculta" (SFO) é caracterizada pela deficiência silenciosa de micronutrientes essenciais que impactam negativamente no crescimento, desenvolvimento e bem-estar infantil. A prevalência da SFO é alta em populações vulneráveis, sendo uma condição de difícil diagnóstico sem exames específicos por cursar com nenhuma ou discreta manifestação clínica. Objetivo: sintetizar e apresentar as evidências atuais sobre o uso de intervenções terapêuticas em crianças com SFO. Métodos: Trata-se de uma revisão narrativa da literatura conduzida por meio da inclusão de artigos originais do tipo ensaio clínico randomizado e revisão sistemática, publicados em revistas científicas indexadas na base de dados PubMed, entre os anos de 2020-2024. Resultados: Cinco artigos originais atenderam aos critérios de eligibilidade e evidenciaram que a suplementação com micronutrientes (e.g., ferro, zinco e vitamina A) e/ou estratégias educativas/comportamentais (e.g., palestra, material informativo e aconselhamento) melhoraram a condição nutricional infantil, reduzindo a anemia, aumentando os níveis séricos de micronutrientes e favorecendo hábitos alimentares saudáveis. Especificamente, a suplementação com ferro melhorou significativamente a função cognitiva em crianças lactentes e escolares. Além disso, a fortificação/biofortificação alimentar destacaram-se como alternativas viáveis para se abordar clinicamente a SFO nos artigos avaliados. Conclusão: A suplementação com micronutrientes e as estratégias educativas desempenham papel crucial no manejo da SFO, com impacto positivo no perfil nutricional e no desenvolvimento infantil. Contudo, a escassez de desfechos clínicos importantes como mortalidade limita o alcance dos resultados obtidos, sendo necessários mais estudos para se aprimorar as intervenções e políticas públicas direcionadas à redução dos casos de SFO em crianças.

Palavras-chave: Fome Oculta. Deficiências Nutricionais. Micronutrientes. Suplementos Nutricionais. Biofortificação.

INTRODUCTION

Nutritional health plays fundamental role in the growth, development, and overall well-being of children. An adequate and diversified diet is mandatory to ensure energy and nutritional needs throughout the various stages of childhood.^{1,2} Nutrients such as proteins, carbohydrates, fatty acids, and especially vitamins and minerals are critical for optimal physical and cognitive function from the first days of life. Dietary patterns established during childhood are likely to persist into adulthood, thereby underscoring the importance of early nutritional education and guaranteed access to healthy foods. These strategies constitute key actions to prevent nutritionrelated health problems such malnutrition, obesity, and type 2 diabetes¹-3

Recent epidemiological estimates reveal that globally, at least one in two children (56%) of preschool age has some micronutrient deficiency, corresponding to 372 million individuals⁴. The most deficient micronutrients in the pediatric population are iron, iodine, zinc, and vitamin A⁴. The global prevalence of these micronutrient deficiencies is variable:

28% for iodine, 18% for iron, 17% for zinc, and 15% for vitamin A^{1,5,6}. The prevalence tends to be higher in middle and low-income countries, especially in East and South Asia, Sub-Saharan Africa, and the Pacific⁴. In Brazil, despite the scarcity of recent population studies on this issue, data from the School Health Assessment Survey (2015) showed a high prevalence of food insecurity (48%) and inadequate intake of zinc (48%) and iron (35%), among other micronutrients⁷.

Hidden hunger syndrome (HHS) refers to the deficiency of essential micronutrients that affect children's health and development, even in the presence of an appropriate caloric intake. deficiency occurs when the diet is inadequate in diversity and quality, resulting in deficiencies of important vitamins and minerals (e.g., iron, vitamin A, iodine, zinc, among others). The cause may be multifactorial, including low access to foods with adequate nutritional value, poor socioeconomic status, food selectivity, and environmental and cultural factors. The signs/symptoms resulting from HHS are difficult to identify during a common clinical examination, since they can be discreet and nonspecific, such as fatigue, drowsiness, difficulty

concentrating, mood changes, and immunological dysfunctions. An accurate diagnosis may be established through a specific nutritional assessment and laboratory tests^{1,8,9}.

HHS is a chronic, silent, and devastating condition that may negatively impact physiological growth, cognitive development, and immune functions of children. In many cases, this condition is more prevalent in vulnerable populations, where access to nutritious foods is limited, increasing the risk of food insecurity and occurrence of other favoring the nutritional deficiencies^{10,11}. HHS can be treated or prevented clinically through a balanced intake of foods that contain essential micronutrients for the physiological demands of the body¹². Therefore, understanding intervention strategies important to promote children's healthy growth and full development. This review aimed to synthesize and present the current evidence on therapeutic interventions in children with HHS.

MATERIAL AND METHODS

This is a structured synthesis of the literature that is presented as a narrative review. The search and inclusion of primary studies on HHS was conducted through five steps: (1) formulation of the research question; (2) definition of eligibility criteria; (3) description of the search strategy to obtain original articles; (4) compilation of the data obtained; and (5) presentation of the results. The mnemonic **PICO** (population, intervention, comparison, and outcome) was used to identify eligible primary studies (Table 1).

The review was planned and conducted following the research question: "How to treat clinically children with HHS?". All primary and secondary outcomes were assessed, including clinical (e.g., presence of diseases and physical/cognitive function), laboratory and nutritional (e.g., serum tests biomarkers), and mortality data. The eligibility criteria were intervention studies published as full-text article in the last five years (2020–2024), including randomized clinical trials, quasiexperimental trials, or systematic reviews/meta-analyses therapeutic interventions in pediatric populations (<18 years) with HHS.

Searches were performed in the PubMed database using the following terms/descriptors in English: "hidden hunger" AND "children". Data extracted from the original articles were study (author/date), design, participants (sample), intervention (treatment), and

outcome (variables/results). Articles whose studies were conducted with adult populations (≥18 years) were excluded. The results were summarized and presented descriptively in a Microsoft Word® table.

Table 1 - Mnemonic PICO (population, intervention, comparison e outcome).

P	Population	Children/adolescents under 18 years of age from the community or health institutions.
I	Intervention	Therapeutic (<i>e.g.</i> , supplementation and medication) and educational (<i>e.g.</i> , nutritional education and counseling).
C	Comparison	No intervention or maintenance of conventional food.
0	Outcome	Clinical (<i>e.g.</i> , physical/cognitive measures), laboratory (<i>e.g.</i> , serum micronutrient levels), and mortality.

RESULTS AND DISCUSSION

All full-text, original articles published between 2020 and 2024 (up to 11/28) that used therapeutic interventions in children with HHS, identified in the PubMed database through the combination of the terms/descriptors mentioned above, were considered for inclusion in this

review. The searches resulted in 47 articles, of which five were included in this review because they were intervention studies. Three were randomized clinical trials, and two were systematic reviews, one with and one without meta-analysis 13-17.

The three randomized clinical trials were conducted in African countries (*i.e.*, Egypt, Malawi, and Ethiopia). One systematic data review was conducted in the Indian population, and the other was

conducted in developed countries such as the United States, England, the Netherlands, Australia, and Chile, among others. In total, 500 children were included in the clinical trials. In one systematic review, sample sizes were between 23 and 24,291 children. The lowest and highest ages reported in the five included studies were zero and 15 years, respectively (Table 2). Daily intake recommendations for some micronutrients in children are presented in Table 3.

Two of the included articles showed a significant reduction in anemia among preschool and school-aged children^{13,15}. This reduction can be attributed mainly to biofortified dietary supplementation with iron and folate, which are capable of restoring serum hemoglobin levels¹⁸. However, one of the included clinical trials did not show a significant difference in hemoglobin concentrations and the presence of anemia between the intervention and control groups in schoolaged children (five and 10 years) who selenium supplementation¹⁶. received Other factors, such as follow-up period, duration of intervention, and age group of participants, may have influenced the therapeutic effects on hemoglobin levels and the prevalence of anemia.

The systematic review conducted by Haridas et al. (2022)¹⁵ presented positive results on serum levels of micronutrients such as calcium, iodine, and zinc in infants, using supplementation strategies (e.g., tablets and syrup) and food education (e.g., information and counseling), carried out alone or in combination. Meals can be enriched with these minerals through dairy products and derivatives, red meat, and seafood. If these are not available, dark leafy vegetables (e.g., kale and broccoli), legumes (e.g., beans and lentils), and eggs can be suitable substitutes 18,19. It is worth remembering that the minerals mentioned here play a crucial role in maintaining the health and well-being of children, preventing not only HHS, but also favoring musculoskeletal, immunological, and thyroid function^{1,18,20}.

Table 2. Characteristics of the articles included in the review (n=5).

Study	Design	Participants	Intervention	Outcome
Original studies		-		
Bassouni <i>et al.</i> (2022) ¹³	Randomized controlled clinical trial.	- Community children aged between 3–9 years with mild and moderate anemia, divided into 2 age-matched groups (n=120): intervention	- IG: supplementation containing Fe, Ze, Se, vitamins A, E, B (1, 2, 6, and 12),	- Significant improvement in anemia in 100% of children <6 years and in 88% of children ≥6 years (p<0.05).
		(IG) and control (CG) group Inclusion criteria: absence of gastrointestinal disorders and use of antibiotics in the last 3 months; child's	folate and niacin, provided through fried meatballs made with chicken liver, 3x/week for 90 days	- Significant increase in fecal systemic IgA, urinary hydroxyproline, and urinary I excretion in favor of IG (p<0.05).
		acceptance of supplementation; mother willing to complete the dietary assessment form and collect stool/urine samples.	(n=60) CG: no supplementation (n=60).	- Significant improvement in verbal and nonverbal cognitive function test scores (Wechsler scale) in favor of the IG (p<0.05).
Joy <i>et al.</i> (2022) ¹⁶	Individually randomized, double-blind, placebo-controlled clinical trial.	 Schoolchildren from rural communities aged between 5-10 years (n=180). Eligibility criteria: children 	- IG: corn flour biofortified with Se for a period of 8 weeks (n=90).	- Significant improvement in serum Se levels in favor of the IG (p<0.05).
		living in the community, who have their meals at home and whose families agreed to receive the intervention.	- CG: corn flour not biofortified with Se (n=90).	- Significant decrease in the prevalence of Se deficiency in favor of the IG (p<0.05).
				- Absence of significant difference in hemoglobin concentrations and the presence of anemia between IG and CG.
				- Absence of significant difference in cases of diarrhea, vomiting, and pneumonia between IG and CG.

Muluye et al. (2020) ¹⁷	Randomized, single-blind, controlled clinical trial, with pre-and post-test comparison.	- Children aged between 6–23 months (n=200) Inclusion/ exclusion criteria: children from daycare centers who were old enough to receive complementary feeding were included; children whose mother had a mental illness identified during baseline data collection and/or a medical restriction on eating any food item were excluded.	- IG: nutritional education strategy through in-person lectures, informative printed material, and practical activities that included recipes and preparation of complementary foods, adequate quantity and frequency of meals, dietary diversification, and personal hygiene and sanitation; the intervention was carried out for 4 consecutive months, biweekly, with 2 hours per session (n=100) CG: no intervention (n=100).	 Increase in the proportion of mothers with good knowledge about appropriate complementary feeding, from 59% in the pre-test to 96% in the post-test, in favor of the IG (p<0.05). Increase in the practice of complementary feeding, from 54% in the pre-test to 86% in the post-test, in favor of the IG (p<0.05). There was no difference in the knowledge and practice of complementary feeding in the CG after 4 months (p>0.05). There was no significant difference in the knowledge and practice of complementary feeding between IG and CG in the pre-test (p>0.05). There was a significant difference in the knowledge and practice of complementary feeding between IG and CG in the pre-test (p>0.05).
Review studies	<u> </u>		10 11	7 1 1 1 7 4
Durão <i>et al</i> . (2024) ¹⁴	Systematic review with meta-analysis.	- Community children aged ≥2 years, attending preschool, primary school, and secondary school (n between 23–24,291 children).	- IG: policy strategies/ interventions that positively influenced eating habits in and around schools (nutritional	 Included 74 studies reporting different comparisons, with low and very low uncertainty evidence. Improvement of the food environment shows modest beneficial effects on some

			standardization to improve food quality; restriction of marketing for foods considered unhealthy; encouragement of healthy eating habits; cost reduction for healthy foods; and direct distribution of foods with high nutritional value such as vegetables and fruits), lasting between months and years. - CG: no intervention.	outcomes (dietary pattern, lifestyle habits, and anthropometric measures) in favor of the IG. - Increased availability of healthy nutrients, presentation/position of food during meals and provision of vegetables/fruits show a beneficial effect on the consumption of healthy foods/beverages in favor of the IG. - Dietary standardization, modification of the size of the portions served, and implementation of multiple behavioral strategies (encouraging healthy consumption) show a beneficial effect on energy intake in favor of the IG.
				- Modifications of the buying or selling behavior of healthy foods show inconsistent effects on the selection and consumption of healthier foods in favor of the IG.
Haridas <i>et al</i> . (2022) ¹⁵	Systematic review.	- Infants, preschoolers, and school-aged children aged between 0–15 years Selection criteria: original	- IG: food-based approach through supplementation with value-added,	Infants: - Significant increase in serum levels of Ca, PO4, Fe, I, and Zn in
		intervention studies from India, published in peer- reviewed journals; studies published in languages other than English and before 2011	synergistic, and micronutrient- enriched foods; fortified or biofortified	favor of the IG Significant improvement in motor and mental development in favor of the IG Significant positive effect on

were omitted; review studies, editorials, short communications, blogs and newsletters were excluded.

supplementation with micronutrients (tablets, syrups, powders, among others); communitybased approach through educational, and behavioral strategies (information. awareness, counseling, among others); combination of the approaches mentioned above: duration of interventions between 3 months and 2 years. - CG: no or other

intervention.

skinfold thickness in favor of the IG.

- Positive effect on health and nutrition in favor of the IG.
- Significant reduction in mortality risk in favor of the IG.

Preschoolers/ schoolchildren:

- Significant decline in the prevalence of anemia and Zn deficiency in favor of the IG.
- No significant difference in Fe deficiency anemia between IG and CG.
- Significant improvement in morbidity status with higher Zn intake in favor of the IG.
- Significant improvement in vitamin D levels and bone mineral density in favor of the IG.
- Significant improvement in serum levels of hemoglobin, folate, albumin, retinol, retinolbinding protein, ferritin, Fe, and Ca in favor of the IG.
- Positive effect on health and nutrition in favor of the IG.

mcg RAE: micrograms of retinol activity equivalents. *Adequate intake per day. †Recommended intake per day.

In the same systematic review by Haridas *et al.* $(2022)^{15}$, a significant improvement in serum vitamin D levels and bone mineral density in preschool/school-aged children was reported with the use of the interventions mentioned in the previous paragraph. Vitamin D is essential for the organic absorption of calcium and phosphorus, which contributes substantially to the formation of bones and teeth in children. Additionally, it is necessary to highlight other functions of this vitamin, since it acts fat-soluble steroid hormone, performing as a cofactor for several enzymatic reactions through physiological signaling/modulation of the endocrine, immune, and cardiovascular systems. Vitamin D deficiency in children can compromise bone development and result in rickets, especially in geographic areas with little sun exposure. Other factors such as skin color, age, and the presence of diseases can affect the amount of vitamin D absorbed. Food sources rich in this vitamin may be difficult to obtain (e.g., fatty fish such as salmon and sardines and cod liver oil), and the use of supplementation and/or sun exposure should be considered^{1,21,22}.

Two of the included articles, the clinical trial conducted by Bassouni et al. (2022)¹³ and the systematic review carried out by Haridas et al. (2022)¹⁵, showed significant improvement in cognitive function in infants and preschool/schoolage children. In particular, the clinical trial demonstrated an increase in scores on the Wechsler Intelligence Scale for Children, which assesses intellectual capacity and problem-solving through verbal and nonverbal domains. The authors observed significant positive effects in practically all items assessed by the scale, including. reading ability, text comprehension, oral expression, object identification, visual recognition, and memory, after 90 days of supplementation with minerals vitamins (e.g., iron, zinc, vitamin A, and B complex). These micronutrients have a positive effect on the neurobiological processes that involve brain function, memory formation, concentration ability, behavior. school motor and performance^{3,23,24}.

A recent systematic review and meta-analysis evaluating the effects of oral iron supplementation on cognitive function in children/adolescents (aged 5–19 years) from low- and middle-income

countries, which included nine original studies from five different countries and 1,196 participants, showed a significant increase in intelligence scores in favor of the intervention group (SMD=0.47, 95% CI=0.10-0.83; p=0.012). Α metaregression analysis showed that intelligence scores improved with increasing iron supplementation dose (OR=1.02, 95% CI=1.02-1.04; p=0.020). A subgroup analysis revealed that the beneficial effects of iron supplementation on intelligence scores were significantly greater in individuals aged >11 years compared to those aged ≤11 years (SMD=1.18,95% CI=0.33-2.04;p=0.007). However, iron supplementation did not determine a significant difference in school performance between the intervention and control groups (SMD=0.42,95% CI=-0.33-1.18; $p=0.257)^{23}$. Cognitive problems resulting from mineral/vitamin deficiencies appear to be mainly important in the poorest regions of the world and vulnerable populations^{3,8}.

Only one of the included articles presented the mortality outcome. This was the systematic review by Haridas *et al.* (2022)¹⁵, who reported a significant

reduction in the risk of mortality in lactating women with the use of dietary supplementation. Specifically, the authors identified a randomized clinical trial in which a 10% reduction in the risk of death at six months was observed among newborns supplemented with vitamin A within 72 hours of birth. It is noteworthy although mortality has been insufficiently investigated in recent clinical studies, HHS is estimated to account for at least one-third of all annually⁸. childhood deaths The relationship between HHS and infant mortality involves multiple pathophysiological and clinically silent mechanisms, since at first clear signs/symptoms of nutritional deficit such as low weight or growth deficiency may not be observed. On the other hand, the lack of micronutrients can chronically compromise systemic functions and result impairment of neurological development, physical capacity, and the immune system. The latter increases vulnerability to serious infectious conditions, which may culminate in fatal events^{1,25}.

The most common therapeutic strategies in the included articles were

Supplementation fortified/ with biofortified foods and of use educational/behavioral methods. Fortified foods are those in which vitamins and minerals are artificially added during their processing. Some examples are iodized salt, iron-fortified flour, and vitamin Dfortified milk. These foods are produced improve the intake of essential micronutrients. Biofortified foods are grown naturally but contain higher levels of vitamins and minerals. This is achieved through genetic improvement and biotechnology techniques. Some examples are vitamin A-rich rice (golden), iron-rich beans (cowpea), and zinc-rich corn. Although both approaches have been used to treat HHS, there are important differences. While fortification depends on industrial processes and allows for broader large-scale implementation, biofortification enhances micronutrient content directly in crops, offering a more sustainable and long-term bypasses post-harvest strategy that interventions. However, biofortification may encounter barriers related to farmer adoption and consumer acceptance, often requiring local adaptations influenced by economic, environmental, and cultural factors ²⁶⁻²⁸.

Educational/behavioral methods aim to inform and engage families and communities on the importance of adequate nutrition for optimal child development. In addition, they promote changes in eating habits and daily meals through psychological and motivational approaches that encourage the adoption of healthy behaviors. Some ofthe educational and behavioral methods used in the included articles were nutritional education in schools through lectures, workshops, provision of educational materials and healthy cooking classes for children and/or parents/caregivers; family and community awareness campaigns on nutrition and healthy eating, restriction of advertising for foods considered unhealthy and reduction of costs for foods considered healthy; and encouragement to change eating habits through motivational and positive conditioning techniques aimed at children and/or parents/ caregivers. These resources can improve a wide range of outcomes related to HHS in children, either alone or combined with food supplementation, representing a simple, low-cost, and safe approach to promote micronutrient-rich dietary habits during childhood^{14,15,17}.

Table 3 - Daily intake recommendations for some minerals and vitamins in children according to age group (0–8 years).

Micronutrient	Quantity	Source
Iron	0-6 months: 0.27 mg/day* 7-12 months: 11 mg/day† 1-3 years: 7 mg/day† 4-8 years: 10 mg/day†	https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (Updated on October 9 th , 2024)
Zinc	0-6 months: 2 mg/day* 7-12 months: 3 mg/day† 1-3 years: 3 mg/day† 4-8 years: 5 mg/day†	https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (Updated on September 28th, 2022)
Iodine	0-6 months: 110 mcg/day* 7-12 months: 130 mcg/day* 1-3 years: 90 mcg/day [†] 4-8 years: 90 mcg/day [†]	https://ods.od.nih.gov/factsheets/Iodine-HealthProfessional/#disc (Updated on November 05th, 2024)
Calcium	0-6 months: 200 mg/day* 7-12 months: 260 mg/day* 1-3 years: 700 mg/day† 4-8 years: 1000 mg/day†	https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (Updated on July 24th, 2024)
Vitamin A	0-6 months: 400 mcg RAE/day* 7-12 months: 500 mcg RAE/day* 1-3 years: 300 mcg RAE/day† 4-8 years: 400 mcg RAE/day†	https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/ (Updated on December 15 th , 2023)
Vitamin D	0-6 months: 400 UI/day* 7-12 months: 400 UI/day† 1-3 years: 600 UI/day† 4-8 years: 600 UI/day†	https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ (Updated on July 26th, 2024)
Vitamin E	0-6 months: 4 mg/day* 7-12 months: 5 mg/day* 1-3 years: 6 mg/day† 4-8 years: 7 mg/day†	https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (Updated on March 26 th , 2021)
Vitamin B12	0-6 months: 0.4 mcg/day* 7-12 months: 0.5 mcg/day* 1-3 years: 0.9 mcg/day† 4-8 years: 1.2 mcg/day†	https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ (Updated on March 26 th , 2024)

Some limitations of this review should be mentioned. First, although only randomized clinical trials and systematic reviews were included, the search was carried out in a database, where only five articles were identified, which did not undergo an appropriate assessment of methodological quality (*e.g.*, risk of bias) and did not have a quantitative synthesis of the primary data (*e.g.*, meta-analysis), which may lead to potential mistakes in the interpretation of the results. Second, there was a considerable scarcity of

physical/anthropometric outcomes (reported in only two articles) and mortality (reported in only one article), which limits the generalizations of the review to clinical settings. Conversely, this review provides very current information nutritional management of on the micronutrient deficiencies in children, including possibilities of supplementation fortification/biofortification. and while also outlining directions for future research.

CONCLUSION

HHS is a chronic and silent clinical condition that may seriously affect the growth, development, and functionality of children. especially in vulnerable populations and low-income regions. This review demonstrated that nutritional interventions such micronutrient as supplementation and food fortification/biofortification are effective for mitigating the effects of this nutritional deficiency, evidenced by the improvement of outcomes such as anemia, serum micronutrient levels, cognitive and function. Additionally, was educational demonstrated that and

behavioral methods can play a crucial role for promoting healthy eating habits. Although evidence shows a positive impact of nutritional interventions on several research domains, the scarcity of studies focused on important clinical outcomes (*e.g.*, mortality) limits the scope of the results.

The diversity of therapeutic approaches, such as iron, zinc, calcium, and vitamin A supplementation, in combination with educational/behavioral strategies, points to an integrated and promising approach to combating HHS in children. However, more robust studies with different clinical outcomes are needed to improve prevention and treatment programs for this condition that affects millions of children globally. In summary, adequate nutritional management, alongside educational initiatives and public policies that improve food accessibility, is essential to provide children's health and well-being, thus ensuring more equitable and healthpromoting dietary practices for future generations.

REFERENCES

- 1. Weffort VRS, Lamounier JA. Hidden hunger a narrative review. J Pediatr (Rio J). 2024;100 Suppl 1(Suppl 1):S10-S17. https://doi.org/10.1016/j.jped.2023.08.00 9.
- 2. Lowe NM. The global challenge of hidden hunger: perspectives from the field. Proc Nutr Soc. 2021;80(3):283-89. https://doi.org/10.1017/S0029665121000 902.
- 3. Antony AC, Vora RM, Karmarkar SJ. The silent tragic reality of Hidden Hunger, anaemia, and neural-tube defects (NTDs) in India. Lancet Reg Health Southeast Asia. 2022;6:100071. https://doi.org/10.1016/j.lansea.2022.100 071.
- 4. Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM, Global Micronutrient Deficiencies Research G. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob Health. 2022;10(11):e1590-e99. https://doi.org/10.1016/S2214-109X(22)00367-9.
- 5. Tayie F, Ghimire S, Moore A, Ojha B. New Highs in Iodine Deficiency Prevalence Among Children: Implications for Growth and Development. Journal of Nutrition Education and Behavior. 2023;55(7):56.
- https://doi.org/10.1016/j.jneb.2023.05.12 4.
- 6. Song P, Adeloye D, Li S, Zhao D, Ye X, Pan Q, et al. The prevalence of vitamin A deficiency and its public health significance in children in low- and middle-income countries: A systematic review and modelling analysis. J Glob Health. 2023;13:04084. https://doi.org/10.7189/jogh.13.040847. Priulli É, Filgueiras MS, Novaes JF. Food insecurity and inadequacy of

- micronutrient intake in Brazilian children. Population Medicine. 2023;5 (Supplement):A1179. https://doi.org/10.18332/popmed/165525. 8. Ekholuenetale M, Tudeme G, Onikan A, Ekholuenetale CE. Socioeconomic inequalities in hidden hunger, undernutrition, and overweight among under-five children in 35 sub-Saharan Africa countries. J Egypt Public Health Assoc. 2020;95(1):9. https://doi.org/10.1186/s42506-019-0034-5
- 9. Na M, Eagleton SG, Jomaa L, Lawton K, Savage JS. Food insecurity is associated with suboptimal sleep quality, but not sleep duration, among lowincome Head Start children of pre-school age. Public Health Nutr. 2020;23(4):701-10.https://doi.org/10.1017/S136898001900332X.
- 10. Wali N, Agho K, Renzaho AM. Hidden hunger and child undernutrition in South Asia: A meta-ethnographic systematic review. Asia Pac J Clin Nutr. 2022;31(4):713-39. https://doi.org/10.6133/apjcn.202212_31(4).0014.
- 11. Srivastava S, Kumar S. Does socioeconomic inequality exist in micronutrients supplementation among children aged 6-59 months in India? Evidence from National Family Health Survey 2005-06 and 2015-16. BMC Public Health. 2021;21(1):545. https://doi.org/10.1186/s12889-021-10601-6.
- 12. Elizabeth GJ, Koshy G. Micronutrient Hunger or Hidden Hunger Among Infants and Young Children on Healthy Diets.

 Nestle Nutr Inst Workshop Ser.

 2024;100:111-24.

 https://doi.org/10.1159/000540141

 13. Bassouni R, Soliman M, Hussein LA, Monir Z, Abd El-Meged AA.

 Development and evaluating the biopotency of ready to eat liver meat balls

in fighting anaemia and vitamin A

deficiency, improving selected nutritional biochemical indicators and promoting the cognitive function among mildly anaemic Egyptian children aged 3-9 years. Public Health Nutr. 2022;25(11):3182-94. https://doi.org/10.1017/S1368980022000 970

14. Durao S, Wilkinson M, Davids EL, Gerritsen A, Kredo T. Effects of policies or interventions that influence the school food environment on children's health and nonhealth outcomes: a systematic review. Nutr Rev. 2024;82(3):332-60. https://doi.org/10.1093/nutrit/nuad059 15. Haridas S, Ramaswamy J, Natarajan T, Nedungadi P. Micronutrient interventions among vulnerable population over a decade: A systematic review on Indian perspective. Health Promot Perspect. 2022;12(2):151-62. https://doi.org/10.34172/hpp.2022.19. 16. Joy EJM, Kalimbira AA, Sturgess J, Banda L, Chiutsi-Phiri G, Manase H, et al. Biofortified Maize Improves Selenium Status of Women and Children in a Rural Community in Malawi: Results of the Addressing Hidden Hunger With Agronomy Randomized Controlled Trial. Front Nutr. 2021;8:788096. https://doi.org/10.3389/fnut.2021.788096 17. Muluye SD, Lemma TB, Diddana TZ. Effects of Nutrition Education on Improving Knowledge and Practice of Complementary Feeding of Mothers with 6- to 23-Month-Old Children in Daycare Centers in Hawassa Town, Southern Ethiopia: An Institution-Based Randomized Control Trial. J Nutr Metab. 2020:2020:6571583. https://doi.org/10.1155/2020/6571583 18. Vishwakarma S, Genu Dalbhagat C, Mandliya S, Niwas Mishra H. Investigation of natural food fortificants for improving various properties of fortified foods: A review. Food Res Int. 2022;156:111186.

https://doi.org/10.1016/j.foodres.2022.11 1186.

19. Bechoff A, de Bruyn J, Alpha A, Wieringa F, Greffeuille V. Exploring the Complementarity of Fortification and Dietary Diversification to Combat Micronutrient Deficiencies: A Scoping Review. Curr Dev Nutr. 2023;7(2):100033. https://doi.org/10.1016/j.cdnut.2023.1000

20. Abbag FI, Abu-Eshy SA, Mahfouz AA, Alsaleem MA, Alsaleem SA, Patel AA, et al. Iodine Deficiency Disorders as a Predictor of Stunting among Primary School Children in the Aseer Region, Southwestern Saudi Arabia. Int J Environ Res Public Health. 2021;18(14). https://doi.org/10.3390/ijerph18147644. 21. Corsello A, Spolidoro GCI, Milani GP, Agostoni C. Vitamin D in pediatric age: Current evidence, recommendations, and misunderstandings. Front Med (Lausanne). 2023;10:1107855. https://doi.org/10.3389/fmed.2023.11078 55.

22. Taylor SN. Vitamin D in Toddlers, Preschool Children, and Adolescents. Ann Nutr Metab. 2020;76 Suppl 2:30-41. https://doi.org/10.1159/000505635. 23. Chen Z, Yang H, Wang D, Sudfeld CR, Zhao A, Xin Y, et al. Effect of Oral Iron Supplementation on Cognitive Function among Children and Adolescents in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients. 2022;14(24). https://doi.org/10.3390/nu14245332. 24. Singh S, Awasthi S, Kumar D, Sarraf SR, Pandey AK, Agarwal GG, et al. Micronutrients and cognitive functions among urban school-going children and adolescents: A cross-sectional multicentric study from India. PLoS One. 2023;18(2):e0281247.

https://doi.org/10.1371/journal.pone.0281 247.

26. Avnee, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr. 2023;10:1233070. https://doi.org/10.3389/fnut.2023.1233070.

27. Siwela M, Pillay K, Govender L, Lottering S, Mudau FN, Modi AT, et al. Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods. 2020;9(6). https://doi.org/10.3390/foods9060815. 28. Aski MS, Mishra GP, Tokkas JP, Yadav PS, Rai N, Bansal R, et al. Strategies for identifying stable lentil cultivars (Lens culinaris Medik) for combating hidden hunger, malnourishment, and climate variability. Front Plant Sci. 2023;14:1102879. https://doi.org/10.3389/fpls.2023.110287 9.